KTH framework for Nek5000 toolboxes; testing version  0.0.1
dorgl2.f
Go to the documentation of this file.
1  SUBROUTINE dorgl2( M, N, K, A, LDA, TAU, WORK, INFO )
2 *
3 * -- LAPACK routine (version 3.0) --
4 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5 * Courant Institute, Argonne National Lab, and Rice University
6 * June 30, 1999
7 *
8 * .. Scalar Arguments ..
9  INTEGER INFO, K, LDA, M, N
10 * ..
11 * .. Array Arguments ..
12  DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
13 * ..
14 *
15 * Purpose
16 * =======
17 *
18 * DORGL2 generates an m by n real matrix Q with orthonormal rows,
19 * which is defined as the first m rows of a product of k elementary
20 * reflectors of order n
21 *
22 * Q = H(k) . . . H(2) H(1)
23 *
24 * as returned by DGELQF.
25 *
26 * Arguments
27 * =========
28 *
29 * M (input) INTEGER
30 * The number of rows of the matrix Q. M >= 0.
31 *
32 * N (input) INTEGER
33 * The number of columns of the matrix Q. N >= M.
34 *
35 * K (input) INTEGER
36 * The number of elementary reflectors whose product defines the
37 * matrix Q. M >= K >= 0.
38 *
39 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
40 * On entry, the i-th row must contain the vector which defines
41 * the elementary reflector H(i), for i = 1,2,...,k, as returned
42 * by DGELQF in the first k rows of its array argument A.
43 * On exit, the m-by-n matrix Q.
44 *
45 * LDA (input) INTEGER
46 * The first dimension of the array A. LDA >= max(1,M).
47 *
48 * TAU (input) DOUBLE PRECISION array, dimension (K)
49 * TAU(i) must contain the scalar factor of the elementary
50 * reflector H(i), as returned by DGELQF.
51 *
52 * WORK (workspace) DOUBLE PRECISION array, dimension (M)
53 *
54 * INFO (output) INTEGER
55 * = 0: successful exit
56 * < 0: if INFO = -i, the i-th argument has an illegal value
57 *
58 * =====================================================================
59 *
60 * .. Parameters ..
61  DOUBLE PRECISION ONE, ZERO
62  parameter( one = 1.0d+0, zero = 0.0d+0 )
63 * ..
64 * .. Local Scalars ..
65  INTEGER I, J, L
66 * ..
67 * .. External Subroutines ..
68  EXTERNAL dlarf, dscal, xerbla
69 * ..
70 * .. Intrinsic Functions ..
71  INTRINSIC max
72 * ..
73 * .. Executable Statements ..
74 *
75 * Test the input arguments
76 *
77  info = 0
78  IF( m.LT.0 ) THEN
79  info = -1
80  ELSE IF( n.LT.m ) THEN
81  info = -2
82  ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
83  info = -3
84  ELSE IF( lda.LT.max( 1, m ) ) THEN
85  info = -5
86  END IF
87  IF( info.NE.0 ) THEN
88  CALL xerbla( 'DORGL2', -info )
89  RETURN
90  END IF
91 *
92 * Quick return if possible
93 *
94  IF( m.LE.0 )
95  $ RETURN
96 *
97  IF( k.LT.m ) THEN
98 *
99 * Initialise rows k+1:m to rows of the unit matrix
100 *
101  DO 20 j = 1, n
102  DO 10 l = k + 1, m
103  a( l, j ) = zero
104  10 CONTINUE
105  IF( j.GT.k .AND. j.LE.m )
106  $ a( j, j ) = one
107  20 CONTINUE
108  END IF
109 *
110  DO 40 i = k, 1, -1
111 *
112 * Apply H(i) to A(i:m,i:n) from the right
113 *
114  IF( i.LT.n ) THEN
115  IF( i.LT.m ) THEN
116  a( i, i ) = one
117  CALL dlarf( 'Right', m-i, n-i+1, a( i, i ), lda,
118  $ tau( i ), a( i+1, i ), lda, work )
119  END IF
120  CALL dscal( n-i, -tau( i ), a( i, i+1 ), lda )
121  END IF
122  a( i, i ) = one - tau( i )
123 *
124 * Set A(i,1:i-1) to zero
125 *
126  DO 30 l = 1, i - 1
127  a( i, l ) = zero
128  30 CONTINUE
129  40 CONTINUE
130  RETURN
131 *
132 * End of DORGL2
133 *
134  END
subroutine dlarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
Definition: dlarf.f:2
subroutine dorgl2(M, N, K, A, LDA, TAU, WORK, INFO)
Definition: dorgl2.f:2
subroutine dscal(n, da, dx, incx)
Definition: dscal.f:2
subroutine xerbla(SRNAME, INFO)
Definition: xerbla.f:2