KTH framework for Nek5000 toolboxes; testing version  0.0.1
dgetf2.f
Go to the documentation of this file.
1  SUBROUTINE dgetf2( M, N, A, LDA, IPIV, INFO )
2 *
3 * -- LAPACK routine (version 3.0) --
4 * Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5 * Courant Institute, Argonne National Lab, and Rice University
6 * June 30, 1992
7 *
8 * .. Scalar Arguments ..
9  INTEGER INFO, LDA, M, N
10 * ..
11 * .. Array Arguments ..
12  INTEGER IPIV( * )
13  DOUBLE PRECISION A( LDA, * )
14 * ..
15 *
16 * Purpose
17 * =======
18 *
19 * DGETF2 computes an LU factorization of a general m-by-n matrix A
20 * using partial pivoting with row interchanges.
21 *
22 * The factorization has the form
23 * A = P * L * U
24 * where P is a permutation matrix, L is lower triangular with unit
25 * diagonal elements (lower trapezoidal if m > n), and U is upper
26 * triangular (upper trapezoidal if m < n).
27 *
28 * This is the right-looking Level 2 BLAS version of the algorithm.
29 *
30 * Arguments
31 * =========
32 *
33 * M (input) INTEGER
34 * The number of rows of the matrix A. M >= 0.
35 *
36 * N (input) INTEGER
37 * The number of columns of the matrix A. N >= 0.
38 *
39 * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
40 * On entry, the m by n matrix to be factored.
41 * On exit, the factors L and U from the factorization
42 * A = P*L*U; the unit diagonal elements of L are not stored.
43 *
44 * LDA (input) INTEGER
45 * The leading dimension of the array A. LDA >= max(1,M).
46 *
47 * IPIV (output) INTEGER array, dimension (min(M,N))
48 * The pivot indices; for 1 <= i <= min(M,N), row i of the
49 * matrix was interchanged with row IPIV(i).
50 *
51 * INFO (output) INTEGER
52 * = 0: successful exit
53 * < 0: if INFO = -k, the k-th argument had an illegal value
54 * > 0: if INFO = k, U(k,k) is exactly zero. The factorization
55 * has been completed, but the factor U is exactly
56 * singular, and division by zero will occur if it is used
57 * to solve a system of equations.
58 *
59 * =====================================================================
60 *
61 * .. Parameters ..
62  DOUBLE PRECISION ONE, ZERO
63  parameter( one = 1.0d+0, zero = 0.0d+0 )
64 * ..
65 * .. Local Scalars ..
66  INTEGER J, JP
67 * ..
68 * .. External Functions ..
69  INTEGER IDAMAX
70  EXTERNAL idamax
71 * ..
72 * .. External Subroutines ..
73  EXTERNAL dger, dscal, dswap, xerbla
74 * ..
75 * .. Intrinsic Functions ..
76  INTRINSIC max, min
77 * ..
78 * .. Executable Statements ..
79 *
80 * Test the input parameters.
81 *
82  info = 0
83  IF( m.LT.0 ) THEN
84  info = -1
85  ELSE IF( n.LT.0 ) THEN
86  info = -2
87  ELSE IF( lda.LT.max( 1, m ) ) THEN
88  info = -4
89  END IF
90  IF( info.NE.0 ) THEN
91  CALL xerbla( 'DGETF2', -info )
92  RETURN
93  END IF
94 *
95 * Quick return if possible
96 *
97  IF( m.EQ.0 .OR. n.EQ.0 )
98  $ RETURN
99 *
100  DO 10 j = 1, min( m, n )
101 *
102 * Find pivot and test for singularity.
103 *
104  jp = j - 1 + idamax( m-j+1, a( j, j ), 1 )
105  ipiv( j ) = jp
106  IF( a( jp, j ).NE.zero ) THEN
107 *
108 * Apply the interchange to columns 1:N.
109 *
110  IF( jp.NE.j )
111  $ CALL dswap( n, a( j, 1 ), lda, a( jp, 1 ), lda )
112 *
113 * Compute elements J+1:M of J-th column.
114 *
115  IF( j.LT.m )
116  $ CALL dscal( m-j, one / a( j, j ), a( j+1, j ), 1 )
117 *
118  ELSE IF( info.EQ.0 ) THEN
119 *
120  info = j
121  END IF
122 *
123  IF( j.LT.min( m, n ) ) THEN
124 *
125 * Update trailing submatrix.
126 *
127  CALL dger( m-j, n-j, -one, a( j+1, j ), 1, a( j, j+1 ), lda,
128  $ a( j+1, j+1 ), lda )
129  END IF
130  10 CONTINUE
131  RETURN
132 *
133 * End of DGETF2
134 *
135  END
subroutine dger(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
Definition: dger.f:2
subroutine dgetf2(M, N, A, LDA, IPIV, INFO)
Definition: dgetf2.f:2
subroutine dscal(n, da, dx, incx)
Definition: dscal.f:2
subroutine dswap(n, dx, incx, dy, incy)
Definition: dswap.f:2
subroutine xerbla(SRNAME, INFO)
Definition: xerbla.f:2