============ Bibliography ============ .. [Smith13] `R. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2013. `_ .. [Ghanem17] `R. Ghanem, D. Higdon, and H. Owhadi, editors. Handbook of Uncertainty Quantification. Springer International Publishing, 2017. `_ .. [Xiu02] `D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(2):619–644, 2002. `_ .. [Xiu05] `D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005. `_ .. [Xiu07] `D. Xiu. Efficient Collocational Approach for ParametricUncertainty Analysis. Communications in Computational Physics, 2(2): 293-309, 2007 `_ .. [Rezaeiravesh18] `S. Rezaeiravesh, R. Vinuesa, M. Liefvendahl, and P. Schlatter. Assessment of uncertainties in hot-wire anemometry and oil-film interferometry measurements for wall-bounded turbulent flows. European Journal of Mechanics - B/Fluids, 72:57-73, 2018. `_ .. [Rezaeiravesh20] `S. Rezaeiravesh, R. Vinuesa and P. Schlatter, An Uncertainty-Quantification Framework for Assessing Accuracy, Sensitivity, and Robustness in Computational Fluid Dynamics, arXiv:2007.07071, 2020. `_ .. [Diamond16] `S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research, 17(83):1{5, 2016. `_ .. [Rasmussen05] `C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X. `_ .. [Goldberg98] `. W. Goldberg, C. K. I. Williams, and C. M. Bishop. Regression with input-dependent noise: A gaussian process treatment. In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems 10, NIPS 97, page 493-499, Cambridge, MA, USA, 1998. MIT Press. ISBN 0262100762. `_ .. [Sobol01] `Sobol, I. Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Mathematics and Computers in Simulation, 55(1):271 – 280, 2001. `_ .. [Gramacy20] `R. B. Gramacy. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Chapman Hall/CRC, Boca Raton, Florida, 2020. `_ .. [Santner03] `T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Computer Experiments. Springer New York, 2003. `_ .. [Owen17] `N. E. Owen. A comparison of polynomial chaos and Gaussian process emulation for uncertainty quantification in computer experiments. PhD thesis, University of Exeter, UK, 2017. `_ .. [Schobi15] `R. Schobi, B. Sudret, and J. Wiart. Polynomial-chaos-based Kriging. International Journal for Uncertainty Quantification, 5(2):171{193, 2015. `_ .. [Eldred09] `M. Eldred and J. Burkardt. Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Jan. 2009. `_ .. [Gardner18] `J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with GPU acceleration. CoRR, abs/1809.11165, 2018. `_ .. [Canuto87] `Canuto C., Hussaini M. Y., Quarteroni A., Tang T. A., Spectral Methods in Fluid Dynamics, Springer-Verlag 1987. `_