Other Core Codes¶
Analytical Test Functions¶
Analytical model functions to test and validate implementation of different UQ techniques.
-
class
analyticTestFuncs.
fEx1D
(q, typ, qInfo=[])¶ Analytical test functions and their exact moments for 1D parameter
- Args:
- q: List or 1D numpy array of size n
Samples of the parameter
- typ: string
- Function type, available: ‘type1’, ‘type2’:
‘type1’ for q~Uniform
‘type2’ for q~Normal
- qInfo: (optional) List (Required for the moments or if q is Gaussian)
qInfo=[qMin,qMax] if q~U[qMin,qMax]
qInfo=[m,sdev] if q~N(m,sdev^2)
- Methods:
- eval():
Evaluates f(q) at q
- moments(qInfo):
Mean and variance of f(q)
- Returns:
- val: 1D numpy array of size n,
Values of f(q) at q
- mean: float
E[f(q)] for q
- var: float
V[f(q)] for q
-
eval
()¶ Value of f(q) at q
-
moments
(qInfo)¶ Analytical Mean and variance of f(q)
-
class
analyticTestFuncs.
fEx2D
(q1, q2, typ, method)¶ Analytical test functions for 2D parameter
- Args:
- q1,`q2`: Two lists or 1D numpy arrays of size n1, n2, respectively.
Samples of the parameters q1 and q2
- typ: string
Function type, available: ‘type1’, ‘type2’, ‘type3’, ‘Rosenbrock’.
- method: string
- Method for handling the multi-dimensionality: ‘comp’ or ‘tensorProd’.
If ‘comp’ (component): n1 must be equal to n2 to make pairs of samples: q=(q1,q2).
If tensorProd’ (tensor-product): size of val is n=n1*n2.
- Methods:
- eval():
Evaluates f(q) at (q1,q2)
- sobol(qBound):
Sobol indices, available only for typ`==’type3’. `qBound: List of length 2, qBound=[qBound1,qBound2] where qBound_i is range of qi
- Returns:
- val: 1D numpy array of size n
- Value of f(q) at q=(q1,q2)
If method==’comp’: n=n1=n2
If method==’tensorProd’: n=n1*n2
- Si[S1,S2],
where Si is the main Sobol index with respect to the i-th parameter, i=1,2
- STi[ST1,ST2],
where Si is the total Sobol index with respect to the i-th parameter, i=1,2
- Sij: [S12],
Dual interaction
-
eval
()¶ Evaluates f(q) at given q1, q2
-
moments
(distType, qInfo)¶ Mean and variance of f(q) estimated by the Monte-Carlo approach (These can be used as reference values instead of the analytical values)
- Args:
- distType: List of length 2
The i-th value (string) specifies the distribution type of the i-th parameter
- qInfo: List of length 2
- Information about the parameter range or distribution.
If q is Gaussian (‘Norm’ or ‘normRand’) => qInfo=[mean,sdev]
Otherwise, qInfo=[min(q),max(q)]=admissible range of q
- Returns:
- mean: float
Expected value of f(q) estimated by the Monte-Carlo method
- var: float
Variance of f(q) estimated by the Monte-Carlo method
-
sobol
(qBound)¶ Sobol sensitivity indices of f(q) with respect to q1 and q2
- Args:
qBound: =[qBound1,qBound2] admissible range of q1, q2
- Returns:
- Si: =[S1,S2],
where Si is the main Sobol index wrt the i-th parameter, i=1,2
- STi[ST1,ST2],
where Si is the total Sobol index wrt the i-th parameter, i=1,2
- Sij: =[S12],
dual interaction
-
class
analyticTestFuncs.
fEx3D
(q1, q2, q3, typ, method, opts)¶ Analytical test functions for 3D parameter
- Args:
- q1, q2, q3: Three lists or 1D numpy arrays of size n1, n2, n3, respectively
Samples of the parameters q1, q2 and q3
- typ: string
Function type, available: ‘Ishigami’
- method: string
- Method for handling the multi-dimensionality: ‘comp’ or ‘tensorProd’
If ‘comp’ (component): n1 must be equal to n2. Pair of samples: q=(q1,q2,q3)
If ‘tensorProd’ (tensor-product): size of val is n=n1*n2*n3.
- opts: function fixed parameters
If ‘Ishigami’: opts=[‘a’:a_val,’b’:b_val]
- Methods:
- eval():
Evaluates f(q) at (q1,q2,q3)
- moments(qInfo):
Analytical values of mean and variance of f(q)
- sobol(qBound):
Analytical Sobol indices
- Returns:
- val: 1D numpy array of size n
- Values of f(q) at q
If ‘comp’: n=n1=n2=n3
If ‘tensorProd’: n=n1*n2*n3
-
moments
(qInfo)¶ Analytical mean and variance of f(q)
- Args:
- qInfo: List of length 3
qInfo=[qBound_1,qBoun_2,qBound_3] where qBound_i: admissible range of the i-th parameter
- Returns:
- mean:
Expected value of f(q)
- var:
Variance of f(q)
-
sobol
(qBound)¶ Sobol sensitivity indices of f(q) with respect to q1, q2, and q3
- Args:
- qBound: List of length 3
=[qBound1,qBound2,qBound3] admissible range of q1, q2, q3
- Returns:
- Si: =[S1,S2,S3]
where Si is Sobol indices with respect to qi
- Sij: =[S12,S13,S23]
dual interactions
Surrogate to Surrogate¶
Interpolate values from one surrogate to another surrogate.
-
surr2surr.
lagIntAtGQs
(fValM1, qM1, spaceM1, nM2, spaceM2, distType)¶ Given response values fValM1 at nM1 arbitrary samples over the p-D spaceM1, the values at nM2 Gauss quadrature points over spaceM2 are computed using Lagrange interpolation.
Both spaceM1 and spaceM2 have the same dimension p.
At each of the p dimensions, ||`spaceM2`||<||`spaceM1`|| at each dimension.
The Gauss quadrature nodes over ‘spaceM2’ can be the abscissa of different types of polynomials based on the distType and the gPCE rule.
A tensor-product grid from the GQ nodes on spaceM2 is created
- args:
- qM1: List of length p
List of samples on spaceM1; qM1=[qM1_1,qM1_2,…,qM1_p] where qM1_i is a 1D numpy array of size nM1_i, for i=1,2,…,p.
- fValM1: numpy p-D array of shape (nM1_1,nM1_2,…,nM1_p).
Response values at qM1
- spaceM1: List of length p.
=[spaceM1_1,spaceM1_2,…,spaceM1_p] where spaceM1_i is a list of two elements, specifying the admissible range of qM1_i, for i=1,2,…,p.
- nM2 List of length p,
Containing the number of Gauss quadrature samples qM2 in each parameter dimension, nM2=[nM2_1,nM2_2,…,nM2_p]
- spaceM2: List of length p.
=[spaceM2_1,spaceM2_2,…,spaceM2_p] where spaceM2_i is a list of two elements, specifying the admissible range of qM2_i, for i=1,2,…,p.
- distType: List of length p with string members
The i-th element specifies the distribution type of the i-th parameter according to the gPCE rule.
- Returns:
- qM2: List of length p
List of samples on spaceM2; qM2=[qM2_1,qM2_2,…,qM2_p] where qM2_i is a 1D numpy array of size nM2_i, for i=1,2,…,p.
- xiM2: numpy array of shape (nM2_1*nM2_2*…*nM2_p,p)
Tensor-product grid of Gauss-quadrature nodes on the mapped space of spaceM2
- fValM2: 1D numpy array of size (nM1_1*nM1_2*…*nM1_p).
Interpolated response values at xiM2
Statistical Tools¶
-
stats.
pdfFit_uniVar
(f, doPlot, pwOpts)¶ Fits a PDF to samples f and plots both histogram and the fitted PDF. As an option, the plots and data can be saved on disk.
- Args:
- f: 1D numpy array of size n
Samples
- doPlot: bool
Whether or not plotting the PDF
- pwOpts: dict (optional)
- Options for plotting and dumping the data with the following keys:
‘figDir’: string, Directory to save the figure and dump the data
‘figName’: string, Name of the figure
‘header’: string, the header of the dumped file
‘iLoc’: int, After converting to string will be added to the figName
-
stats.
pdfPredict_uniVar
(f, fTest, doPlot)¶ Evaluates the continuous PDF fitted to f at fTest.
- Args:
f: 1D numpy array
fTest: List of length m
- Returns:
pdfPred: 1D numpy array of size m
Linear Algebra¶
Tools for linear algebra.
To solve a linear system which is under-determined, the compressed sensing method is used.
The required optimization is handled by cxvpy
[Diamond16].
Different solvers can be used for this purpose, a list of which can be obtained by
cvxpy.installed_solvers().
The required options for each solver can be found in this cvxpy page.
Note that the default solver is directly specified in linAlg.myLinearRegress()
.
-
linAlg.
myLinearRegress
(A, R, L_=1, solver_='OSQP', max_iter_=100000)¶ - Solves the linear system of equations Af=R in its normalized form A’Af=A’R
This solver works for uniquely-, over-, and under-determined linear systems. If system is under-determined, the compressed sensing method with L1 or L2 regularization is used. For this purpose, the library cvxpy is used (https://www.cvxpy.org).
- Args:
A: numpy array of shape (n,K)
R: numpy array of size n
- L_: int (optional)
Specifies the regularization order, L_=1 or 2
- solver_: string (optional)
A cvxpy solver for the optimization problem. To see the available list of solvers print cvxpy.installed_solvers(). Also see https://www.cvxpy.org/tutorial/advanced/index.html?highlight=installed_solvers
- max_iter_: int (optional)
Maximum number of iterations to find the optimal solution when doing compressed sensing
- Returns:
- f: 1D numpy array of size K
The solution of the linear system A.f=R
Reshaping Tools¶
Tools for converting and reshaping arrays and lists.
-
reshaper.
lengthVector
(x)¶ Returns the length of vector x which can be a list or a numpy array
-
reshaper.
vecs2grid
(x)¶ Makes a p-D (p>1) tensor-product grid from a list of length p containg 1D numpy arrays of points in each dimension.
- Args:
- x: A list of length p>1
x=[x1,x2,…,xp] where xi is a 1D numpy array of size ni
- Returns:
‘z’: A numpy array of shape (n1*n2*…*np,p)
-
reshaper.
vecsGlue
(*x)¶ Makes a set by gluing p>1 1D numpy arrays x0,x1,…,xp of the same size (=n)
- Args:
x: 1D numpy arrays each having the size of n
- Return:
- z: numpy array of shape (n,p)
z[:,i]=xi where i=1,2,…,p